Label Noise Cleaning with an Adaptive Ensemble Method Based on Noise Detection Metric
نویسندگان
چکیده
منابع مشابه
Active cleaning of label noise
Mislabeled examples in the training data can severely affect the performance of supervised classifiers. In this paper, we present an approach to remove any mislabeled examples in the dataset by selecting suspicious examples as targets for inspection. We show that the large margin and soft margin principles used in support vector machines (SVM) have the characteristic of capturing the mislabeled...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملEnsemble Empirical Mode Decomposition: An adaptive method for noise reduction
Empirical mode decomposition (EMD), a data analysis technique, is used to denoise non-stationary and non-linear processes. The method does not require any pre & post processing of signal and use of any specified basis functions. But EMD suffers from a problem called mode mixing. So to overcome this problem a new method known as Ensemble Empirical mode decomposition (EEMD) has been introduced. T...
متن کاملAn Improved Adaptive Median Filtering Method for Impulse Noise Detection
An Impulse noise detection & removal with adaptive filtering approach is proposed to restore images corrupted by salt & pepper noise. The proposed algorithm works well for suppressing impulse noise with noise density from 5 to 60% while preserving image details. The difference of current central pixel with median of local neighborhood pixels is used to classify the central pixel as noisy or noi...
متن کاملShearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20236718